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Abstract

This paper presents an analytical solution of the transient temperature distribution in a finite solid when heated by a moving heat
source. The analytical solution is obtained by solving the transient three-dimensional heat conduction equation in a finite domain by
the method of separation of variables (SOV). Meanwhile previous studies focus on analytical solutions for semi-infinite domains, here
an analytical solution is provided for a finite domain. The non-homogeneous equation is solved by using the Laplace transform for a unit
impulse and then convoluted with the actual heat source. Two different distributions are used: a Gaussian distribution and a spatially
uniform plane heat source.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Lasers are being increasingly employed in material pro-
cessing due to their ability to generate a highly concentrated
thermal energy. One important application is in Laser
Assisted Machining (LAM), a relatively recent technique
for machining brittle ceramic materials by, first, heating
and softening the material with a laser beam, without reach-
ing its melting point and; finally, cutting the workpiece by
means of a tool as in the traditional process. In this way,
the damage of the workpiece and tool is minimized.

Jaeger [1] and Carslaw and Jaeger [2] presented solu-
tions for solving a broad range of moving heat source cases
(band, square or rectangular) in some manufacturing and
tribological applications using the heat source method.
According to Hou and Komanduri [3], this technique
would be more appropriately termed the method of superpo-

sition of temperature field of individual heat sources. Rosen-
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thal [4] pioneered the application of the theory of moving
point and moving line heat sources for welding.

Woo and Cho [5] found an analytical solution of the
temperature distribution in surface hardening processes
using a moving laser beam as a heat source, for a three-
dimensional domain of finite thickness, but infinite along
the laser path and transversal directions. The heat source
was assumed to take the form of a rectangular constant
energy density, obtaining fairly good agreements with the
performed experiments.

Modest and Abakians [6] solved the heat conduction
problem due to a moving heat source with a Gaussian dis-
tribution in an infinite domain of semi-infinite thickness at
quasi-steady state. They considered CW and pulsed laser
irradiation, obtaining an exact solution for the latter case.
It was concluded that a simple integral method with one-
dimensional conduction (normal to the surface) could be
applied instead of the exact solutions as long as the non-
dimensional laser speed (the laser speed multiplied by laser
radius and divided by the thermal diffusivity of material) be
higher than 10. Additionally, for the pulsed laser irradia-
tion, the non-dimensional period (the laser speed multiplied
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Nomenclature

CP specific heat
CW continuous wave
Lx domain dimension in the x-direction
Ly domain dimension in the y-direction
Lz domain dimension in the z-direction
kT workpiece thermal conductivity
h convection coefficient
q0 heat flow absorbed by the workpiece
q00 heat flux
q000 heat generation

t time
T temperature
TEM transverse electromagnetic mode
T0 ambient temperature
U velocity of the laser beam
x,y,z Cartesian coordinates

Greek symbols

aT thermal diffusivity
q density
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Fig. 1. Schematic of the laser beam and the finite workpiece.
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by the pulse laser period and divided by the laser radius)
must be much lower than the non-dimensional velocity in
order to neglect lateral conduction.

Komanduri and Hou [7] obtained a general solution for
the laser surface hardening process using a disk heat source
with a pseudo-Gaussian heat intensity distribution in a
semi-infinite steel workpiece of finite width. They inferred
that this exact analytical solution provided a better insight
into the physical process of laser transformation hardening
of steels than the semi-empirical equations developed by
Steen and Courtney [8] based on the regression analysis
of the experimental data.

Stephenson et al. [9] developed a transient, three-dimen-
sional analytical model for predicting cutting tool temper-
ature through the separation of variable method,
considering a fixed heat source on the surface of the insert.
Comparison with measured temperatures showed good
agreement.

Experimental data and numerical modeling regarding
temperature distribution in a sample of silicon nitride are
encountered [10–13] at different laser powers and cutting
speeds in a LAM process. According to these investiga-
tions, the temperature near the cutting tool location must
be in excess of approximately 1000 �C to successfully
machine silicon nitride material.

Most of the analytical solutions encountered in the liter-
ature are based on semi-infinite domains and quasi-steady
states for a constant source speed. To the best of our
knowledge, there is not in the literature a transient, three-
dimensional analytical solution for a complete finite
domain describing the temperature evolution due to a
space-dependent moving heat source. For this reason, the
present paper attempts to fill the gap above-mentioned in
order to validate a previous numerical model, analyze the
boundary effects, investigate start-up effects and evaluate
the influence of parameters involved in the LAM process,
mainly power and speed of the heat source.

2. Mathematical modeling

Consider a laser beam source used to pre-heat a parallel-
epiped workpiece of finite dimension Lx, Ly and Lz (see
Fig. 1). As the laser progresses with a velocity U, the heat
from the source penetrates further into the workpiece.

The following assumptions are considered:

• Heat losses by radiation are negligible as compared to
the intensity of the incident laser beam (Gutierrez and
Araya [14], Modest and Abakians [15]).

• Thermal properties are considered constant and evalu-
ated at an average temperature.

With the above assumptions, the governing equation is the
transient heat conduction equation, that written in terms of
h = T � T0, yields:

1

aT

oh
ot
¼ o2h

ox2
þ o2h

oy2
þ o2h

oz2
þ q000ðx; y; z; tÞ

kT

ð1Þ

where kT and aT are the thermal conductivity and thermal
diffusivity of the workpiece, respectively, and q000(x,y,z, t) is
the heat generation source term.

2.1. Heat source modeling

The heat source term q000(x,y,z, t) is considered as a laser
beam of temporal continuous wave (CW) and spatially
modeled by assuming two different distributions: a spa-
tially uniform plane heat source and a Gaussian distribu-
tion (corresponding to the theoretical TEM00 mode of
the laser). TEM comes from the acronym transverse elec-
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tromagnetic mode, specifying the number of nodes gener-
ated by a slight misalignment of the mirrors located in
the laser cavity. Fig. 2 shows some transverse modes and
the simplest mode, TEM00, is considered in this paper.

The purpose is to compare the temperature profiles cal-
culated by employing both heat source models with the
same net power and the same heating area, since a constant
heat flux model would diminish enormously the calculation
effort.

The spatially uniform distribution takes the form of a
rectangular constant energy density:

q00 ¼
q0

4RS @ z ¼ 0; Ut < x < Ut þ 2R; and� S < y < þS

0 otherwise

�

ð2Þ

Here, q0 is the heat flow absorbed by the workpiece, R and
S are the half-size of the laser beam along x and y, respec-
tively. Finally, U is the laser beam velocity.

The irradiance distribution of the Gaussian TEM00

beam can be described as follows:

IðrÞ ¼ I0e�kr2=r2
0 ð3Þ

where I0 is the intensity at the center of the spot [W/m2], k
is the constant (in general, a value of 2 is used for a
Gaussian model).

The radial coordinate r is related to the Cartesian coor-
dinates x and y, through:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4

p
ðRSÞ

r
: beam waist radiusðmÞ

In this way, the circular area for the Gaussian distribution
is the same as the rectangular area for the uniform heat flux
distribution.
Fig. 2. Different transversal modes in a laser spot.
The Gaussian heat flux distribution is imposed as:

q00 ¼
I0e�kðx2þy2Þ=r2

0 @ z ¼ 0; Ut � r0 < x < Ut þ r0; and

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � x2
p

< y < þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0 � x2
p

0 otherwise

8><
>:

ð4Þ
In both cases, the volumetric heat generation is defined as
q000 = q00d(z), being d(z) the Dirac delta function.

2.2. Initial and boundary conditions

Boundary conditions at the six faces of the parallelepi-
ped domain and an initial condition have to be provided
(@ t = 0, h = 0).

Insulated conditions were imposed at x = 0 and y = 0
(condition of symmetry), meanwhile constant surface con-
ditions were considered at x = Lx, y = Ly/2 and z = Lz.
The main reason of selecting Dirichlet conditions at faces
x = Lx, y = Ly/2 and z = Lz can be summarized as follows:
the numerical results obtained in a previous investigation
[14] showed that the above mentioned workpiece faces
always reached ambient temperature no matter which
boundary condition was established, due to the extremely
concentrated heating effect of the laser source and dimen-
sions of the workpiece. Two different boundary conditions
are analyzed at the top surface: Case 1 considers an insu-
lated condition except on the heating zone powered by
the laser, and Case 2 regards a convection boundary condi-
tion, instead.

The non-homogeneous boundary value problem of Eq.
(1) can be solved by assuming that h(x,y,z, t) is expressed
as a series expansion of the eigenfunctions:

hðx; y; z; tÞ ¼
X

i

X
j

X
k

HijkðtÞX iðxÞY jðyÞZkðzÞ ð5Þ

The eigenvalues and eigenfunctions have the form:

X iðxÞ¼ cosðaixÞ; ai¼
2iþ1

2Lx
p; i¼ 0;1 . . .n ð6Þ

Y jðyÞ¼ cosðbjyÞ; bj¼
2jþ1

Ly
p; j¼ 0;1 . . .n ð7Þ

Case 1 ZkðzÞ¼ cosðckzÞ; ck ¼
2kþ1

2Lz
p; k¼ 0;1 . . .n

ð8Þ

Case 2 ZkðzÞ¼ cosðckzÞþ h
kTck

sinðckzÞ ð9Þ

where tanðckLzÞ ¼ �kTck
h is the eigencondition. Here, a2,b2,

c2 are the separation constants.
It is possible to express the non-homogeneous term q000

as a linear combination of the eigenfunctions:

q000 ¼
X

i

X
j

X
k

/ijkðtÞX iðxÞY jðyÞZkðzÞ ð10Þ

Multiplying Eq. (10) side-by-side by the eigenfunctions,
integrating over the whole domain and making use of the
orthogonality property of the eigenfunctions:
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Z Lx

0

Z Ly=2

�Ly=2

Z Lz

0

q000X iðxÞY jðyÞZkðzÞdxdy dz

¼ /ijkðtÞ
Z Lx

0

X 2
i ðxÞdx

Z Ly=2

�Ly=2

Y 2
j ðyÞdy

Z Lz

0

Z2
kðzÞdz

¼ /ijkðtÞ
LxLy

4

Z Lz

0

Z2
kðzÞdz ð11Þ

Since q000 is known, the function /ijk(t) is also known. The
triple integral on the left hand of Eq. (11) is solved differ-
ently according to the two heat source distributions consid-
ered. Also, integration of the eigenfunctions Zk(z) depends
on the case analyzed: insulated or convective conditions at
the top surface.

2.3. Spatially uniform plane heat source and insulated top

surface

In this case, integration of Eq. (11) is straightforward
and an analytical expression for /ijk(t) can be obtained:

/ijkðtÞ¼
q0

4RS
8

LxLyLz

Z Lx

0

X iðxÞdx
Z Ly=2

�Ly=2

Y jðyÞdy
Z Lz

0

dðzÞZkð0Þdz

ð12Þ

Integrating the eigenfunctions;

Z Lx

0

X iðxÞdx ¼
Z X sþ2R

X s

cosðaixÞdx ¼ sinðaixÞ
ai

����
X sþ2R

X s

ð13Þ

where Xs is the source position each instant of time, i.e., the
product of the source velocity, U, by time, t.

Z Ly=2

�Ly=2

Y jðyÞdy ¼
Z S

�S
cosðbjyÞdy ¼ 2

bj
sinðbjSÞ ð14Þ

Z Lz

0

dðzÞZkð0Þdz ¼
Z Lz

0

dðzÞ cosð0Þ þ h
kTck

sinð0Þ
� �

dz

¼
Z Lz

0

dðzÞdz ¼ 1 ð15Þ

In expression (15), the same result is obtained for Cases 1
and 2 because the sinusoidal function is null at the surface,
i.e., at z = 0.

Finally, /ijk(t) is determined by substituting Eqs. (13)
and (14) into Eq. (12):

/ijkðtÞ¼
4q0

RSLxLyLzbjai
sinðbjSÞ½sinðaiðX sþ2RÞÞ�sinðaiðX sÞÞ�

ð16Þ
Substituting Eq. (16) into Eq. (10) and inserting it into Eq.
(1) together with Eq. (5), an ordinary differential equation
for Hijk(t) is obtained:

1

aT

dHijk

dt
¼ �ða2

i þ b2
j þ c2

kÞHijk þ
/ijk

kT

ð17Þ

Defining xijk ¼ ða2
i þ b2

j þ c2
kÞaT and XijkðtÞ ¼ aT

kT
/ijkðtÞ, Eq.

(17) results;
dHijk

dt
þ xijkHijk ¼ XijkðtÞ ð18Þ

With the following initial condition:

hðx; y; z; 0Þ ¼
X

i

X
j

X
k

Hijkð0ÞX iY jZk ¼ 0 ð19Þ

Since Xi(x),Yj(y) and Zk(z) are not zero for arbitrary values
of x, y and z, it follows that Hijk(0) = 0. For solving Eq.
(18), we consider first an impulse applied at t = 0;

dHijk

dt
þ xijkHijk ¼ dðtÞ ð20Þ

Taking the Laplace transform to Eq. (20):

sHðsÞ þ xijkHðsÞ ¼ 1) HðsÞ ¼ 1

sþ xijk
ð21Þ

where H(s) is the transfer function. Performing the corre-
sponding inverse Laplace transform of (23),
hðtÞ ¼ ‘�1½HðsÞ� ¼ e�xijk t. Now, superimposing the function
Xijk(t), the response is the convolution of h(t) with Xijk(t):

HijkðtÞ ¼ hðtÞ � XijkðtÞ ¼
Z t

0

hðt � sÞ � XijkðsÞds ð22Þ

For the uniform heat flux distribution, the integral (22)
results:

HijkðtÞ ¼ �2aTq0

ðxijkAþ e�xijk tBþ aiUCÞ
D

ð23Þ

where

A ¼ cosðbjS þ aiUt þ 2aiRÞ � cosðbjS � aiUt � 2aiRÞ
þ cosðbjS � aiUtÞ þ cosðbjS þ aiUtÞ

B ¼xijk½cosðbjS � 2aiRÞ � cosðbjS þ 2aiRÞ�
� 2aiU sinðbjSÞ½cosð2aiRÞ � 1�

C ¼ sinðbjS þ aiUt þ 2aiRÞ þ sinðbjS � aiUt � 2aiRÞ
� sinðbjS � aiUtÞ � sinðbjS þ aiUtÞ

D ¼bjaiLxLyLzSRkT a2
Ta4

i þ 2a2
Ta2

i b
2
j þ 2a2

Ta2
i c

2
k

�

þa2
Tb4

j þ 2a2
Tb2

j c
2
k þ a2

Tc4
k þ a2

i U 2
�

The temporal function (23) together with the eigenfunc-
tions (6)–(9) constitutes the temperature distribution due
to a moving constant heat flux dictated by Eq. (5).

2.4. Gaussian distribution and insulated top surface

A similar procedure is followed; nevertheless, the heat
power now depends on the x and y coordinates, and cannot
be removed out of the integral (11). For the insulated top
surface case, Eq. (11) can be written as follows;

Z xcþr0

xc�r0

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0
�ðx�xcÞ2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0
�ðx�xcÞ2

p Ioe
�k½ðx�xcÞ2þy2 �

r2
o cosðaixÞ cosðbjyÞdxdy

¼ /ijkðtÞ
LxLyLz

8
ð24Þ



Fig. 3. Two-dimensional temperature profile on the workpiece surface.
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where xc represents the x-coordinate of the heating circle
center on the surface and is given by the product Ut. Since
the laser is moving, the limits of integration in the x-direc-
tion are changing. To obtain an expression for /ijk(t), the
surface integral is computed numerically for each mode i,
j at each time instant.

2.5. Convective top surface

For accounting the heat loss due to convection in the
top surface, the eigenvalues must now be calculated from
the tangential function, and the computation of the integral
(11) by means of the eigenfunction (9).

3. Results and discussion

The analytical solution is tested for pre-heating a work-
piece of silicon nitride, whose thermophysical properties
are summarized in Table 1 (Incropera and DeWitt [16],
Touloukian et al. [17]). Dimensions of the workpiece are
0.04 m · 0.02 m · 0.00625 m along x, y and z-directions,
respectively.

3.1. Spatially uniform plane heat source and insulated top

surface

In this case, the dimensions of the square heat source are
1 mm · 1 mm, a net power of 50 W and a laser speed of
0.1 m/s. Since the temperature gradients are very steep near
the heat source, many eigenvalues have to be used and the
Fourier series becomes expensive computationally. After
conducting a convergence test, it was determined that a
number of 800 eigenvalues in each direction was enough
to obtain an accurate solution.

Fig. 3 shows a typical two-dimensional temperature pro-
file in the workpiece surface. As can be seen, the affected
zone by the laser source is extremely concentrated.

Comparison of the analytical solution with a previous
numerical model developed by Gutierrez and Araya [14]
is depicted in Figs. 4–6 along x, y and z-directions, respec-
tively. The laser beam is at 0.75 Lx and in all temperature
profiles a good agreement can be appreciated. Regarding
start-up effects, it is established that a distance of approxi-
mately three source lengths is necessary to reach the quasi-
steady state condition.

Influence of lateral boundaries (y = ±Ly/2) can be
neglected if they are located farther than, at least, one
source length from the laser beam path; this means that
Table 1
Thermophysical properties silicon nitride (Si3N4)

Melting point (�C) 1900
Density (kg/m3) 2400
Specific heat Cp (J/kg �C) @ 1000 �C 1278.96
Thermal conductivity (W/m�C) @ 1000 �C 5.91
Thermal diffusivity (m2/s) @ 1000 �C 1.9 · 10�6
the solid may be considered as a semi-infinite domain.
Thus; if the domain of interest is large enough in the x
and y-directions, in such a way that the influence of lateral
boundaries can be neglected; the present analytical solution
for a finite region approaches the solution for an infinite
domain (in x and y) of finite thickness introduced by
Woo and Cho [5], according to Fig. 7. The latter solution
is much simpler and cheaper to compute than the present
one; however, for small domains or heating points next
to the boundaries, the influence of lateral faces may posses
an important impact on maximum temperatures. Also, the
effect of the workpiece thickness on the peak temperature is
observed in Fig. 7, as comparison of the present solution
with a solution obtained by Carslaw and Jaeger [2] for an
infinite domain (in x and y) of semi-infinite thickness
x* = x/Lx

0 0.25 0.5 0.750

100

200

300

Fig. 4. Comparison of the analytical solution with numerical predictions
[14] along the x-direction over the surface (z = 0) and at the plane of
symmetry (y = 0).
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[14] in the y-direction over the surface (z = 0).

z* = z/Lz

T
em

pe
ra

tu
re

[°
C

]

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400
Analytical solution
Numerical solution

Net power : 50 Watts
Laser speed : 0.1 m/s
Laser position : 0.75 Lx

Fig. 6. Comparison of the analytical solution with numerical predictions
[14] in the z-direction at the plane of symmetry (y = 0) just under the laser
spot.
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square heat source according to the assumed domain.
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(in z). It was necessary to increase twelve times the original
workpiece thickness to obtain a top surface temperature
similar to that of a semi-infinite solid by the Carslaw and
Jaeger [2] solution.

Figs. 8 and 9 show the trend of temperature profiles
behind the laser position along the y and z-directions. It
is appreciated a rapid decrease of temperatures together
with a ‘smoothing’ process of peak values. For instance,
the peak temperature diminished more than three times
at only 2 mm (0.7 Lx) behind the laser spot position (0.75
Lx).

3.2. Gaussian distribution and insulated top surface

For comparison, temperature profiles for Gaussian and
constant heat flux distributions of the laser beam are calcu-
lated by using a net power of 50 W and a laser speed of
0.1 m/s. The integral in the left-hand side of Eq. (24) is
solved numerically for each mode i, j at each time instant
to obtain an expression for /ijk(t). In this case, it is estab-
lished that 150 eigenvalues are good enough for reaching
convergence.
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Table 2
Necessary parameters for reaching the softening temperature in silicon
nitride

Net heat power (W) 50 100 200 300

Required speed (m/s) 0.28 0.72 2.15 3.8
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For the above conditions, the maximum surface temper-
ature obtained by using a constant heat flux model was
1311 �C, meanwhile the Gaussian distribution generated a
peak of 2175 �C. Therefore considering the last value as
the more realistic one, the difference in peak temperatures
is around 40%. In Fig. 10, it is observed both temperature
profiles when the laser source is at 0.25 Lx and remarkable
discrepancies exist near the location of the concentrated
heat source; however, both temperature profiles present
similar trends far from the source. In summary, it is not
appropriate to consider a laser beam as a constant heat
flux, even at similar heating surfaces and input powers,
due to the considerable disparities obtained in peak
temperatures.

A specific application of the solution encountered in a
LAM process is showed in Table 2, which exhibits the
required laser speed and absorbed heat power to reach a
surface temperature of approximately 1000 �C, considering
a Gaussian distribution for the laser beam. This tempera-
ture (1000 �C) allows silicon nitride to become softer;
improving the production time, minimizing the damage
of the workpiece and resulting in a higher tool life [10–13].

All cases were run in a processor Apple X server with 2
GB of memory. Comparison of CPU times required by the
present analytical solution and a previous numerical simu-
lation [14] indicated the supremacy, as expected, of the lat-
ter one. CPU time of the analytical solution with Gaussian
model is approximately ninety times longer than the CPU
time of a spatially uniform heat source model. On the other
hand, the ratios between CPU times of the analytical (spa-
tially uniform and Gaussian distributions) to numerical
solutions are, respectively, 7 · 104 and 6.5 · 106.

3.3. Convective top surface

The majority of laser assisted machining processes uti-
lizes a gas assist jet to protect the laser focusing optic from
machining debris; therefore, considering a forced convec-
tive top surface (Case 2) is more realistic. Since there was
no previous research on the forced convection coefficients
in LAM processes, the coefficient selected is that used in
laser hardening processes [5], which are similar thermal
processes: 184 W/m2 K.

Differences in the surface temperatures for the forced
convection case were roughly 2.5% when compared with
the insulated case, utilizing one of the required power-
speed combinations to reach the softening temperature
(1000 �C), i.e., 50 W and 0.28 m/s.

Convection condition requires finding the eigenvalues
from a transcendental equation that introduces additional
numerical efforts without gaining much accuracy.

4. Conclusions

In this study; an analytical solution, for describing the
transient temperature distribution induced by a moving
heat source in a finite domain, is determined.

Two models for the laser source are analyzed: spatially
uniform plane and Gaussian distributions, obtaining
remarkable discrepancies in peak temperatures.

Boundary effects were estimated, having the workpiece
thickness the most significant influence on surface temper-
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atures. On the other hand, surface temperature reached its
maximum value (quasi-steady state) in a very short dis-
tance, around three source lengths.

Finally, forced convection effects are practically negligi-
ble and can be ignored for the sake of simplicity without
impact in the accuracy of the solution.
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